西安特变电工电力设计有限责任公司 陕西西安 710119
摘要:在建筑工程项目的设计过程中,地基基础和桩基的设计工作是整个建筑工程中的重要项目和内容,对整体建筑工程的稳定性有至关重要的作用。因此,建筑设计单位进行地基基础和桩基的设计工作时,应加强对该工作的重视,根据施工现场的实际情况合理选择地基和桩基的类型,根据建筑上部结构产生的荷载以及外部荷载的作用确定桩长,在满足建筑经济性的基础上保证建筑基础的稳定性。本文对建筑工程的常用地基基础和桩基设计中的相关问题进行研究,希望促进建筑结构施工的顺利开展,保证地基和桩基的稳定性和安全性,提高建筑结构工程的质量提供借鉴。
关键词:建筑工程;地基基础;桩基;设计
引言
随着我国城市化建设进程的飞速发展,建筑行业突飞猛进,带动了国民经济的进步与发展。在建筑工程的建设过程中,桩基基础属于一种地下成桩方式,地基基础和桩基设计是关键内容,决定着建筑的稳定性。施工中不可避免地会产生类似开裂、缩扩径、砼离析等问题,这些问题不同程度上影响到桩基质量,加强基础设计是建筑结构设计的主要内容,不仅为有效提高建筑的质量打下了坚实的基础,也为人们追求建筑物的高品质提供保障。
1 建筑地基基础设计的主要内容
建筑地基基础设计是工程的一个关键环节。建筑地基设计,简单来说,就是对地基基础进行概念设计,包括对建筑工程中的力学性质、地质性质以及土力学等概念进行研究与分析,还要对施工现场土层的含水量等情况进行全面的研究,根据所有研究结果进行建筑地基基础设计。建筑地基基础概念设计和传统的建筑结构设计的概念不同,建筑地基基础设计更注重的是对建筑工程的承载能力,负责的主要是建筑工程结构整体的稳定性,进而使建筑工程的使用寿命延长,提高建筑工程的质量。
2 建筑工程常用的地基基础种类
建筑工程常用的基础类型包括桩基础、独立基础、钢筋混凝土筏板基础、条形地基基础等,在实际工程项目中,应根据工程所在地的地质情况以及建筑的荷载情况合理选择基础类型。以下对分别桩基础、独立基础、钢筋混凝土筏板基础和条形地基基础进行简要介绍。
2.1 桩基础
桩基础应用分以下几种情况:1)当建筑工程的上部结构需要较强的承载能力,但是地基上部土层较软,下部分布有能够当作桩端持力层的坚实土层的情况下;2)当地基承载力较强,但是建筑对沉降量有较高的要求的情况下也可以应用桩基础;3)当天然地基的沉降量过大,难以进行处理并且难以符合建筑物浇筑要求时,可以应用桩基础;4)在施工环境较差,土层松软并且较薄时可以应用桩基础,通过钻孔灌注短桩的方法来实现。
2.2 独立基础
柱下基础一般都是采用刚性或者柔性的独立基础。为了减少成本支出,基础桩距较大时,一般采用独立基础。建筑单位可以根据实际情况采用拉梁适当拉结的方式,提升建筑工程的稳定性和整体性,提高地基的抗变形性能和抗震性能,保证建筑的安全性,减少安全隐患。独立基础一般还会被应用在高层建筑中,当高层建筑的上部结构为框架体系时,地基的承载性能较好,地基变形较小,整体建筑的荷载和柱网的分布情况整体较为均匀,可采用独立基础。需要注意的是,建设单位需要从横纵2个方向进行拉梁的连接。施工时注意应根据实际情况对拉梁的断面进行选择,保证距离的科学性,实现建筑的稳定性。
2.3 钢筋混凝土筏板基础
钢筋混凝土筏板基础的适用范围较小,只适用于少数特殊情况下。建筑地基的土质不均匀时,地基承受力较弱,而建筑上部结构的荷载力大,通过十字交叉基础的应用,相邻基础之间的距离和缝隙会变小,使很多基础底面出现覆盖重叠的问题,难以满足基础底面积的实际需求,在这种情况下,可以应用筏板基础。另外,对含有地下室的建筑结构进行施工时,因为本身建筑结构的特殊性,会出现受潮和渗水问题,因此,建筑单位可以应用筏板基础作为地下室的底板结构,防止各种情况和问题的发生,提高建筑结构的稳定性。筏板基础具有较强承载力,较高的强度,能够有效提高整体建筑结构的牢固性和稳定安全性。
2.4 条形地基基础
建筑工程的上部结构的荷载较大,而地基的抗变形性能和承载力较差时,为了保证施工质量,通常应用刚性基础,但是应用刚性基础很容易导致基础断面较大,若为浅基础,则基础会露出地面,不利于结构的稳定性,如果采取基础加深的操作,会导致土方量和基础成本造价增加。即使应用了刚性基础,也很容易导致基础受到的应力较大,使建筑基础出现裂缝和不均匀沉降问题,对上部建筑的墙体稳定性和安全性造成影响。当这种情况出现时,可以应用钢筋混凝土条形基础,不仅可以承受较大的弯矩和剪力,更符合建筑基础断面的大小和配筋量要求,满足各方面的受力要求。必要时,还可以增加肋梁,提高基础的抗弯能力,防止地基不均匀沉降的发生。
3 建筑桩基设计的主要内容
建筑采用桩基作为基础结构时,需要明确桩基的种类和桩长,并对单桩竖向承载力进行计算,以保证桩基能够有足够的承载力职支撑建筑的上部结构,提高建筑的抗倾覆能力。
3.1 明确基桩的种类和长度
保证基桩设计的科学性和合理性是整个建筑结构工程顺利开展的一项重要内容。首先,设计人员要对施工现场周围的环境进行勘察,对周围的各项设施和地质水文等因素进行深入分析和研究,进而合理选择桩基类型。另外,根据建筑作用于桩基的荷载,计算桩基的长度,并尽量使桩端嵌入承载力较强的土层中,保证桩基的承载力和稳定性。
3.2 以建筑等级为依据对单桩竖向承载力进行核算
当建筑桩基设计为甲级时,应根据单桩静载力测试明确单桩极限承载力;当建筑桩基设计为乙级并且施工现场地质条件较优时,可学习相同类型和规模的建筑施工案例,做好相应的复原试验;当建筑桩基设计为丙级时,由于结构简单,可通过乙级应用的复原测试对其进行相关数据的获取。桩基的直径较大时,可以通用深层平板承载符合试验获得单桩竖向承载力,建筑结构施工中应用嵌岩桩时,可以通用专门的岩基平板承载符合试验获得单桩竖向承载力。单桩竖向极限承载力的计算:(1)极限承载力的计算属于桩基设计的重要内容,在设计的时候,竖向承载力应满足以下规定:①如果建筑桩基设计是甲级,就应该利用单桩静载试验来确定极限承载力;②当桩基设计为乙级,并且具有简单的地质条件,就可以参照类似的工程条件进行桩基设计,同时还应该结合相应的原位试验等加以综合确定;(2)极限端阻力、极限侧阻力、单桩竖向极限承载力标准值应按下列规定确定:①一般的桩基承载力可根据规范来确定;②然而那些大直径端承型桩,就可以利用深层平板载荷试验确定极限端阻力;如果是嵌岩桩,还可以根据岩基平板载荷试验确定;③通常情况下,桩的极限侧阻力及阻力可通过预埋测试元件的方式通过静载试验确定。
3.3 桩基竖向偏差的控制和处理
桩基施工中对桩的偏差必须严格控制,特别是对于承台桩及条形桩,桩位的偏差都将产生很大的附加内力,而使基础设计处于不安全状态。根据JGJ94-94第7.4.12条我们控制桩顶标高的允许偏差为-50~+100mm,但实际施工中偏差这么大将引起繁重的施工任务及损失。当桩顶标高高于设计标高,则需要劈桩,特别对于预应力管桩等空心桩来说,桩顶有桩帽劈桩既困难又不经济;而当桩顶标高低于设计标高时,又需要补桩头,这既影响工期又浪费金钱。
3.4 桩基达到其极限承载力而无法压至设计标高
这里可能存在两种情况,其一是地质报告有误,桩实际承载力大于计算值,必须先做试桩以确定其合理的桩长及承载力。其二则可能由于土层本身原因,譬如说饱和砂土产生的孔隙水压力使桩基根本无法压入,这就需要我们从施工措施上去解决。首先是必须制定合理的施工顺序,譬如说跳打,使先期施工的桩产生的水压力消散后再施工下一根桩;其次对静力压桩来说必须选择有足够压桩力的施工机械,要避免抬机等现象出现;另外可以采取引孔,设置排水孔等措施尽量减少空隙水压力。当然压桩时必须注意压桩力应控制在桩身极限强度范围以内,且应注意压桩挤土作用对周边建筑物的影响。
4 结语
我国建筑行业经过长时间的积累使建筑结构工程中的地基基础种类较多,因此,在实际的建筑施工过程中,施工单位要根据实际的情况来对地基基础的种类进行科学合理的选择,对整体的工程进行科学合理的划分,实现高质量高效率地完成建筑工程,保证建筑结构工程的质量。
参考文献:
[1]李铁铮.建筑结构工程常用的地基基础与桩基设计[J].科学与财富,2019(22):80.
[2]何鸽琳.建筑结构工程常用的地基基础与桩基设计浅述[J].建筑工程技术与设计,2018(17):4433.
[3]陈晓竹.建筑结构工程常用的地基基础与桩基设计浅述[J].房地产导刊,2018(12):25.