苗绣背带上的数学归纳法

发表时间:2021/7/30   来源:《时代教育》2021年9期   作者:李成婵
[导读] 我县是布依族苗族自治县,在校学生大多数是少数民族,他们的数学成绩一直都不太理想,
        李成婵
        贵州省镇宁民族中学 贵州省 561200
        摘要 我县是布依族苗族自治县,在校学生大多数是少数民族,他们的数学成绩一直都不太理想,对数学也毫无兴趣。我们一直在尝试提起学生学习数学的兴趣,最后想到了将少数民族文化与课堂教学结合在一起的方式,教学效果也比较好。数学归纳法是数学思维方法中最重要最常用的方法之一,这不仅因为其中大量问题都与自然数有关,更重要的是它贯穿于发现问题和解决问题的全过程,也是培养学生“创新意识”的一个工具。它给我们提供了思考问题的原则,从简单入手,在看透简单的基础上再复杂一步,找出一般规律。这正是数学归纳法的精髓,也正是它被广泛应用的根本原因所在。
[关键词]民族文化;数学归纳法;创新;
一、知识来源
        本节课程主要内容来源于人民教育出版社A版选修2-2第二章第三节《数学归纳法》。
二、设计背景
        苗绣是苗族姑娘必会的一项手艺,他们会将自己觉得优秀的苗绣作品送给自己认为重要的人。首先,他们会在绣布上绣上自己设计的作品,绣好的作品称为绣片。有的绣片被镶嵌在苗族服饰上,苗族姑娘们穿上它,形成了一道靓丽的风景。除此,绣片还会被用在背带(背孩子的工具)上;装裱后挂在墙上;被作为收藏品等等。在布依族苗族自治县赶集的时候,你会在街上看到这样的风景,有人用漂亮的背带背着孩子在街上赶集。
       
图1 背带上的方形图案
三、教学目标
(一)通过背带上的图案探究数学归纳法的原理,能用数学归纳法解决简单的数学问题。
(二)利用背带上的图案教会学生从具体事物上抽象出数学问题,联系生活,体验“数学来源于生活”。
(三)让学生体验“由特殊到一般”的推理过程,推导出数学归纳法的一般步骤。
四、教学重难点
重点:数学归纳法的步骤
难点:理解步骤之间的联系,以及作此步骤的原因。
五、教具准备
ppt课件;视频;
六、教学方法
根据本节课的特点,为了更有效的突出重点,突破难点,本节课运用了启发式教学法、讲授法、问答法。
七、教学过程
(一)情景引入 激发兴趣
情境一(播放多米诺骨牌视频)
下面,我们一起来看一个视频。
老师:怎样才能让多米诺骨牌全部倒下?
学生:第一张骨牌倒下
老师:为什么只要第一张牌倒下就能让全部的牌倒下?
学生:因为第一张会导致第二张倒下,第二张又会导致第三张倒下,以此类推,最后一张牌也会倒下。
思考:让所有的多米诺骨牌全部倒下,必须具备什么条件?
老师根据学生的回答总结条件如下:
条件一:第一张骨牌倒下
条件二:任意相邻的两张骨牌,前一张倒下一定导致后一张倒下。
老师:你能不能用数学语言总结出多米诺骨牌倒下的条件?
        我们可以令骨牌的顺序为,那第一个条件表述为数学语言就是,当时,骨牌只有一张,第一张骨牌倒下,也就意味着全部骨牌都倒下。因此,我们可以表述如下:
        当时,骨牌全部倒下。
老师:如果我们令第张骨牌倒下,那么?
学生:第张也会倒下。
因此,我们可以用数学语言表述第二个条件。
        当时,第张骨牌倒下,则第张骨牌也会倒下,所有的骨牌都倒下。
[设计意图]
多米诺骨牌是探究数学归纳法步骤的一个重要的工具,除了本身具备游戏的特点能吸引学生外,对于本节课,它易于理解,容易探究。
(二)深入探究 得出结论
        看完多米诺骨牌的视频后,我们一起来探究下面这个问题。

        
        即:当时,等式成立。
        思考:第一块骨牌不倒行不行?假如从第二块、第三块骨牌开始将骨牌推倒,结果会是怎样?


        [设计意图]
        利用刚学地知识解决一开始面临的问题,起到承上启下的作用。并且能让学生马上通过该题收悉数学归纳法的使用。
(四)反馈练习 加深理解
[设计意图]
这一步是学生理解数学归纳法的关键,若是只讲解前面的问题,学生最多能把握数学归纳法的步骤,不能掌握数学归纳法。该环节让学生理解数学归纳法的每一步不是可有可无的,都是相辅相成的。
(六)布置作业
        1.书面作业:P96习题2.3A组,第1题(1)(3);
        2.思考1:情景一中的第个正方形面积该如何表示(不能使用等比数列相关知识)   
         思考2:习题2.3A组第1题其它证明方法。
[设计意图]
        第1题书面作业帮助学生巩固数学归纳法,第二题思考1要求学生不能使用等比数列相关知识解决,达到对数学归纳法的巩固练习。第2题思考2可以利用数列求和,让学生比较两种方法,说明数学归纳法并不是解决与正整数有关问题的唯一方法,同时也提醒学生利用数学归纳法证明的第二步不能用数列求和公式。
八、板书设计
        
        


投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: