长白山地灾监测中泥石流监测的阈值分析

发表时间:2021/8/6   来源:《基层建设》2021年第13期   作者:叶鑫
[导读] 摘要:地质灾害监测的主要目的是通过监测数据分析,提前预判灾害发生时间,从而作出预警,涉及到监测必然要提出监测阈值问题,本文就泥石流的监测阈值进行了分析做出相应计算,得出各监测点位监测项目阈值。
        四川志德岩土工程有限责任公司  四川成都市  610041
        摘要:地质灾害监测的主要目的是通过监测数据分析,提前预判灾害发生时间,从而作出预警,涉及到监测必然要提出监测阈值问题,本文就泥石流的监测阈值进行了分析做出相应计算,得出各监测点位监测项目阈值。
        地质灾害监测的主要目的是通过监测数据分析,提前预判灾害发生时间,从而作出预警,避免或减少因灾造成人员伤亡、财产损失等。故所监测的内容及具体数据均要与灾害发生时间建立一定的相关性,利用监测数据及预警模型做好地质灾害预警工作。
        1 泥石流监测阈值分析
        对于暴雨型泥石流而言,降雨量和降雨强度的大小,是激发泥石流的决定性因素。在同一条泥石流沟中,当无地震等极端事件发生时,流域内沟床条件在一定时期内,可认为是相对稳定的,而降雨条件和固体物质的储备分布在流域内存在一定的时空变化。对某一泥石流沟道,泥石流是否发生,决定于流域内的降雨条件及固体物质的储备和分布状况。因此,在查清沟道内可形成泥石流的松散固体物质储备及分布的情况下,利用降雨资料预警泥石流发生是国内外目前通行的一种方法。合理的雨量阈值指标是保障泥石流预警报准确性的关键。
        1.1 泥石流灾害活动与降雨关系
        根据现场调查结合访问和相关资料收集,对地震后泥石流灾害发生的时间及当时的降雨情况进行对比分析。长白上北景区泥石流灾害有记载的爆发有10次,根据有记录的10次泥石流灾害时间的时间,以及灾害发生当日的24h降雨量和灾害发生前10天一次降雨过程累积降雨量、当日小时降雨量峰值开展统计。
        表1  长白山泥石流灾情历史统计表
       
        从统计数据可以发现,泥石流爆发当日均发生强降雨,且爆发前10日存在小规模降雨,提升了物源区地下水位。由此推测:短期强降雨是诱发长白山地区泥石流爆发的直接诱因,爆发前发生的小规模降雨为泥石流爆发提供了一定的水源条件。
        1.2 泥石流统计降雨临界值分析
        泥石流的激发是短历时暴雨和前期降雨量共同作用的结果。以往多处实测资料表明,泥石流的激发多出现在降雨过程峰值降雨之中的某一时刻。峰值雨量的持续时间一般较短,通常只有几分钟到几十分钟,这种短历时的峰值降雨在泥石流研究中被称为泥石流的激发雨量。不同短历时的暴雨均可以说明泥石流的激发雨量,长白山北景区泥石流灾害爆发降雨临界值的分析以 1 h 雨强为例。
        对2013年5月-2018年9月1小时降雨数据进行统计分析,存在小时雨强超过14mm的强降雨事件共有20次,其中6次发生在临近日期内,所以得到单独强降雨事件共14次,统计各次降雨事件的前10日历史降雨,考虑衰减的累积降雨,当日降雨,和当日小时降雨峰值,衰减累积降雨根据Glade的累积降雨公式
       
        Rn为灾害发生前n日雨强,k为折减系数,根据经验值取0.84。
        表2  长白山北景区强降雨事件表
       
        注:日降雨量为当日降雨总量,当日小时降雨量峰值为当日小时降雨量值最高值
        14次降雨事件中,共有8次,10处沟道爆发了泥石流灾害,根据是否爆发泥石流,及泥石流爆发地点进行分类统计,得到泥石流-历史降雨(衰减累积降雨)-当日降雨(小时降雨)关系图
       
        图2  历史降雨和日降雨关系统计图
       
        图3  衰减降雨和小时降雨峰值关系统计图
        通过对长白山泥石流灾害日数及其前10日内每天的降雨情况进行统计研究,发现自有历史统计以来,每次的泥石流灾害爆发当日都有较大降雨,且降雨量从泥石流发生当日到灾害发生前10日内大致呈减小的趋势,说明当日降雨是诱发泥石流的主要因素,且离泥石流爆发时间越近的降雨对引发泥石流发生的影响越大。因此泥石流-衰减累积降雨-小时峰值雨强关系模型最适合作为长白山北景区泥石流的阈值模型,
        1.3 泥石流启动降雨临界值分析
        (1)泥石流启动临界水深τf
        一般情况下泥石流沟床内的松散堆积体的长度和宽度均远大于堆积体的厚度,因此采用无限坡模型对松散堆积体进行受力分析。设泥石流沟床坡度为ѳ,松散堆积体厚度h,水深为hw,堆积体主要受重力和孔隙水压力作用,取单位长度堆积体进行受力分析,如下图所示。
       
        图4  沟床内堆积体受力
        根据摩尔一库伦强度准则,松散堆积体的抗剪强度为:
        (1)
        式中:c为松散堆积体的内聚力;φ为松散堆积体的内摩擦角;σ为堆积体对沟床的压力即正应力;u沟床内堆积体受力为沟床面上的孔隙水压力。
        正应力σ为堆积体的重力在垂直于沟床平面方向上的分量,计算公式为:
          (2)
        式中:ρs为松散堆积体的密度;g为重力加速度;hw为堆积体厚度;ѳ为沟床坡度。
        孔隙水压力u的计算公式为:
        (3)
        式中:ps为水的密度;g为重力加速度;hw为水深;ѳ为沟床坡度。
        松散堆积体的剪应力是重力沿沟床平面向下方向上的分量,计算公式为
        (4)
        松散堆积体的安全系数FS为抗剪强度和剪应力之比,将式(3)和式(4)代人到式(2)中,得到抗剪强度的计算公式,由此,得到松散堆积体的安全系数FS的计算公式
        (5)
        水深逐渐增加时,孔隙水压力增大,松散堆积体的有效应力减小,抗剪强度降低,安全系数减小。根据极限平衡理论,当安全系数为1时,松散堆积体处于极限平衡状态,即临界破坏状态,松散堆积体失稳,暴发泥石流。当式(5)中的安全系数FS为1时,水深hw为泥石流发生的临界水深。由此,得到临界水深的计算公式为
       
        (2)泥石流雨量阈值
        在泥石流沟床内取横截面,泥石流沟床宽度为B,可计算泥石流流域内平均流量
        (7)
        式中:V为泥石流的流速,在泥石流防治工程设计中,一般采用经验公式计算泥石流流速。目前有关泥石流流速的经验公式很多,最常用的是铁道科学研究院西南研究所推荐的泥石流流速计算公式,这也是被列入泥石流防治规范中的公式,本次研究采用此公式
        进行泥石流流速计算,公式如下
        (8)
        式中:为泥石流修正系数, =(rc一1)/(rH一rc);rH为泥石流容重;rc为泥石流土粒容重;Rw为泥石流的水力半径,对于泥石流沟,可用临界水深hw来代替;I为水面比降,一般用河床纵比降代替;mc为泥石流糙率系数。
        径流深是指一定时间段内总径流量平铺在整个流域面积上的水层深度,本次研究以1 h降雨强度作为泥石流的激发雨量,则流域内径流深R可以表示为
        (9)
        式中:Q为式(7)计算得出的平均流量/(m3/s);F为流域面积/km2。
        本次研究以1 h降雨强度作为泥石流的激发雨量,用1 h降雨量k代替一次降雨量P,前期降雨量直接影响着一次降雨前土壤的含水率,所以用前期降雨量P。代替土壤含水率:
        (10)
        由式(10)可以计算泥石流暴发时的径流深。由于流域最大蓄水量Wm为一定值,所以泥石流暴发时R+Wm。也为一定值。一般的流域最大蓄水量为80—120 mm。当达到时,泥石流则暴发,也就是说为泥石流暴发的临界降雨量。为前期降雨量,前期降雨量只影响土壤的含水率,对于泥石流的暴发起更重要的诱发作用的是激发雨量,也就是1 h降雨强度,忽略前期降雨量和流域最大蓄水量既的影响,或是假设二者相等,则诱发泥石流的1 h降雨强度等于泥石流暴发时的径流深R,所以式计算出的径流深R即为诱发泥石流的1 h降雨强度,即诱发泥石流的临界降雨量。
        1.4 泥石流降雨阈值综合取值
        根据泥石流历史统计模型和泥石流临界水深模型,历史统计降雨模型有效直接的得到了区域性泥石流降雨阈值,但是由于统计数据限制,无法精确到每条泥石流,根据泥石流临界水深模型求得各条泥石流的小时降雨阈值结果基本吻合,在临界模型计算中,假设了流域最大蓄水量Wm和先期降雨Pa相等,普遍使用经验值100mm,根据历史降雨记录,选取代表性降雨事件可对先期降雨Pa进行计算,得到最终泥石流前期10日累积降雨阈值见表,当日小时降雨阈值见表:
        表3  泥石流前期10日累积降雨阈值
       
        表4  泥石流当日小时降雨阈值
       
        参考文献:
        [1]谭万沛,王成华,姚令侃,等.暴雨泥石流滑坡的区域预测与预报:以攀西地区为例[M].成都:四川科学技术出版社,1994:1-279.
        [2]CAHINE N. The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flows [J]. Geografiska Annaler(SeriesA:Physical Geography),1980,62(1-2):23-27.
        [3]CANNON S H,ELLEN S D. Rainfall Conditions for Abundant Debris Flow Avalanches in the San Francisco Bay Region California[J]. California Geology,1985,38(12):267-272.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: