赵小俊
陕西洋县第二高级中学
摘 要:如何在数学教学中提升学生的核心素养,是我们数学教师的永远课题,本文以“利用函数性质判定方程解的存在”为例,让学生体会“函数与方程的统一”,进一步体现数形结合思想。
关键词:核心素养;函数零点;方程的根
【数学素养】数学抽象、逻辑推理
【教学目标】
(1)知识与技能目标
了解函数零点的概念;理解函数零点与方程的根之间的关系;掌握判断函数零点存在的方法;
(2)过程与方法目标
培养学生独立思考,自主观察和探究的能力;树立数形结合,函数与方程相结合的思想;
(3)情感态度与价值观目标
培养学生用联系的观点看待问题;感悟由具体到抽象、由特殊到一般地研究方法,形成严谨的科学态度。
【教学重点】函数零点与方程根之间的联系及零点存在的判定定理
【教学难点】探究发现零点存在条件,准确理解零点存在性定理
【教学方法与手段】实例引入、探究新知、实践探索、总结提炼、总结、反思。
【使用教材的构想】倡导积极主动,勇于探索的学习方式,运用数形结合、教师引导——学生探索相结合的教学方法,学生亲身经历、感受来获取知识,培养学生观察、发现、抽象与概括、运算求解等思维过程。
【教学过程】
(一)设置情景,导入新课
(二)引导探究,获得新知
1、函数零点
概念:把函数y=f(x)的图像与x轴交点的横坐标称为函数y=f(x)的零点。
说明:①函数零点不是一个点,而交点的横坐标值。
②求函数零点就是求方程f(x)=0的根。
2、函数的零点与方程的根有共同点和区别:(重点讲解)
(1)联系:
①数值上相等:求函数的零点可以转化成求对应方程的根;
②存在性一致:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(2)区别:零点是对于函数而言,根是对于方程而言。
以上关系说明:函数与方程有着密切的联系,解决相关问题可互相转化,这正是函数与方程思想的基础。
2、零点存在基本定理:
(1)观察函数的图象探索零点存在条件.
①在区间(a,b)上___(有/无)零点;f(a)·f(b) ___ 0(“<”或“>”).
②在区间(b,c)上___(有/无)零点;f(b)·f(c) ___ 0(“<”或“>”).
③在区间(c,d)上___(有/无)零点;f(c)·f(d) ___ 0(“<”或“>”).
(2)零点存在性定理:
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点。即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
3、例题剖析,巩固新知
例1:判断下列结论是否正确,若不正确,请使用函数图象举出反例:
(1)已知函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,
则f(x)在区间(a,b)内有且仅有一个零点。
(2)已知函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)≥0,
则f(x)在区间(a,b)内没有零点。
(3)若函数y=f(x)在区间[a,b]满足f(a)·f(b)<0,
则f(x)在区间(a,b)内存在零点。
解析:((提问学生,引导分析,举出反例)
概括归纳:定理不能确定零点的个数;定理中的“连续不断”是必不可少的条件;不满足定理条件时依然可能有零点。
巩固新知
参考文献:
[1] 中华人民共和国教育部.普通高中数学课程标准(2017年版)
[M] .北京:人民教育出版社,2018
[2] 王尚志.普通高中数学课程标准(2017年版)解读[M] .北京:高等教育出版社,2018