王燕勤
国网山西省电力公司吕梁供电公司 山西省吕梁市 033000
摘要:智能变电站的广泛推广有效促进了电力系统的良性发展,而继电保护系统可靠性的高低将会对智能变电站的正常运行产生重要的影响。为了保证智能变电站的安全稳定运行,本文对一些可以有效提升继电保护系统可靠性的措施进行了简要的介绍。
关键词:智能变电站;继电保护系统;可靠性
1智能变电站继电保护系统可靠性的重要意义
电器元件在单位时间内、特定的环境下完成规定功率,并且不发生任何故障,这就能够代表这个元件的可靠性。电网的智能化建设过程中变电站是最为关键的节点,继电保护系统的智能化程度以及运行稳定性对于变电站运行的稳定程度产生直接的影响。变电站的智能化实现一般通过两个途径,信息及网络技术的方式,其中有很多的电子元件及智能设备,并且所有的元件及设备都必须安全、稳定、可靠。变电站运行的客观条件、数据及环境因素发生一定的变化都会影响整个电力系统的运行,继电保护系统会在故障发生的第一时间发挥其隔离的作用,让整个系统规避电压、电流带来的危害,提升整个系统运行的稳定性。所以,继电保护系统稳定性直接关系到整个电力系统的运行,必须着力于提升其可靠性。
2智能变电站继电保护系统
从实用功能的角度出发,可以将智能变电站分成三个层面,分别是:间隔、过程以及站控层。间隔层利用计量、测控、保护等一些列设备对本间隔一次设备进行相关操作,全面的收集信号并把相关信息传输到站控层;过程层实际上是数字化接口,对接一次设备,其中包含很多设备,例如智能终端、合并单元等;站控层的主要功能是建立与远端控制中心的联系,控制全站一二次设备。“直采直跳”是当前我国的智能变电站中使用范围比较广泛的一种继电保护模式。继电保护模式一般可以分为三种,分别是直采直跳变压器、母线、线路。其中传输采集信号采用的都是光缆,只有智能终端和断路器间不是,其采用的是控制电缆。
3智能变电站继电保护系统所遇到的问题
3.1数据信息传输障碍
由于智能化变电站整体所涵盖的智能化设备较多,其对于电力数据信息处理和传输速度有非常高的要求,一旦继电保护系统在运行过程中出现电力数据信息传输障碍,便会立刻造成相关指令的无效性应答反馈,从而影响电力系统的正常运行。也就是说,一旦连接相关设备的光纤线路或者其他容易影响数据传输的传输介质出现问题,便会对电力数据信息的传输效率造成不良影响,不仅影响智能变电站的正常运行,而且还会增加经济成本支出。
3.2失误问题较多
继电保护系统中常见的失误主要集中在计算方面,计算失误常常会影响继电保护系统正常作用的发挥。而且在计算失误中,又以定值整定计算的失误和人为的计算失误为主,因为定值整定计算的失误通常会导致智能变电站继电保护系统出现较大的运行风险。而人为的计算失误常常会造成一定的操作误差,从而影响继电保护系统运行的可靠性。
4提升继电保护系统可靠性的措施
由于继电保护系统的可靠性高低对于智能变电站甚至整个电力系统的正常运行有关键的影响作用,提升继电保护系统的可靠性是非常有必要的。因此在本节中,将对可以提升继电保护系统可靠性的相关措施进行简要介绍。
4.1提高变压器保护的可靠性
在对电力系统的电压进行有效控制时,相关的变压器系统发挥着关键的作用,因此通过一定的措施来提高变压器保护的可靠性是非常重要的。在对变压器进行优化时,当前最常用的有二次谐波制动原理、人工神经网络原理以及比率制动原理等。以人工神经网络原理为例,该原理不仅可以有效提升电力设备运行的精确度,而且还可以通过对电力设备运行状态的实时记录以及显示来对相关功能进行实时的有效控制。
4.2增强过程层继电保护可靠性
继电保护系统中相关的过程层继电保护主要是指对系统变压器设备以及母线进行最大限度保护,从而有效确保电网系统的正常运行。在过程层继电保护系统的支持下,可以保证电网对于可能出现的电力波动做到快速响应,在最短的时间内将非正常波动规律的电力波动恢复到正常稳定的可控范围内。而且由于在对系统变压器设备和母线进行保护时,需要保证相关硬件和对应开关控制的相对独立,在对过程层继电保护可靠性进行有效增强的过程中,通常会采用多段线路保护方式。该方式下的增强过程,可以保证实时记录的数据的准确性,由此便可以增强过程层继电保护的可靠性。
4.3系统结构优化
为了有效提升继电器保护系统的可靠性,需要对系统的结构进行一定程度的优化。由于传统的变电站在二级系统的电力信息采集过程中常常具有一定的冗余性,而冗余性的存在将导致智能变电站在对电力数据信息进行采集分析时常常需要消耗很长的时间,极大地影响了数据信息的采集效率。所以在智能变电站运行过程中,需要通过系统结构的优化避免继电保护系统所存在的冗余。例如以继电保护为核心,采用数据源统一的方式来降低电力数据信息采集的具体延时,从而有效提升继电保护系统的可靠性。
4.4电压的限定延时
当智能变电站在正常模式下运行时,由于电流等相关因素的影响,常常会出现一些包括短路等问题在内的线路故障,这些故障的存在将导致智能变电站出现负荷电流现象。基于此,通常需要采用针对电压的限定延时来对智能变电站整体运行中相关线路的电流量进行仔细的测量。如果通过对电流量的分析发现线路中的负荷电流超出了规定的安全值,那么电力系统便会及时发出报警信息,且在发出报警信息的同时,同步执行相应的线路保护指令,从而最大限度避免故障的发生,有效提升了电力系统运行的可靠性。
4.5提高间隔层继电保护可靠性
除了以上措施外,还可以通过提高间隔层继电保护可靠性来对继电保护系统整体的可靠性进行提升。间隔层继电保护主要为电力系统中一定范围内的线路控制开关、后备设备、电力线路以及端母线提供实时保护,而且可以准确分析电力系统运行过程中所产生的故障,并根据相应的故障处理要求提供合适的解决办法。同时,间隔层继电保护可靠性的提高可以实现智能变电站对电压等级进行合理的集中配置,从而满足电网运行的实际需求。
5继电保护技术的展望
调控参数趋向于标准化与统一化。电气自动化调控系统的有效应用,可以实现自动化装置的统一配置,进而有效地降低了装置安装的时间和成本,同时调控参数的标准化的提升,也使得电气网络架构整体运行更具有通用性,有效的降低了不同企业之间数据交流的困难,实现了电气网络通信的流畅、性能大幅度提升。
实现电气工程控制技术应用的市场普及。电气自动化工程控制系统已经成为一项成熟的工业产品,在与现代科学技术的有效结合下,实现了产品性能随着市场整体需求的灵活调整,零部件外包工程的逐步完善,使得电气工程调控系统的运行,更加市场化,电气工程控制技术应用实现市场资源配置合理性的进一步提升。
结束语
在电力发展过程中,为了有效适应社会发展每个阶段对于电力的不同需求,电力系统需要通过不断引入新的技术来对自身进行优化升级,例如当前被广泛推广建设的智能变电站。但是智能变电站对于继电保护仍然具有比较高的要求,因为继电保护系统作为智能变电站整体架构中重要的组成部分,其可靠性的高低将在很大程度上决定智能变电站运行的稳定以及安全。
参考文献
[1]韦强强.电力系统中智能变电站继电保护技术分析[J].通讯世界,2020,27(01):224-225.
[2]张庆红.电力系统继电保护实用技术应用分析[J].自动化应用,2020(01):115-117.
[3]谢俊波,彭文架.智能变电站继电保护系统及其应用探讨[J].大众用电,2020,35(01):28-29.
[4]黄彬彬.智能变电站继电保护系统运行探讨[J].数字通信世界,2020(01):250-251.