吴节权
金霸王(中国)有限公司 广东东莞 523000
摘要:随着我国经济水平和科技创新水平的不断发展,机械制造业已然成为工业领域中的重点发展内容之一。现代机械制造技术与传统机械制造技术相比,具有系统化、信息化、智能化等特点,结合计算机技术发展机械制造行业是必然趋势。毋庸置疑,精密加工技术是提升机械制造生产效率的重要工艺手段。基于此,本文针对现代机械制造工艺及精密加工技术应用进行探讨分析,以供参考。
关键词:机械制造;精密加工技术;工艺;应用
引言
随着时代的稳定发展与进步,我国工业化水平正在不断提高,为机械制造行业带来了全新的挑战与机遇。在我国市场经济背景下,企业为了能够增加自身的竞争优势,提高企业机械制造工艺技术的水平,应该做好全面的分析,掌握各项工作开展的现状,给企业带来持续稳定的经营效益。在各项工作在开展的过程中推动我国工业化发展。只有不断将精密加工技术融入现代机械制造中,才能够全面发挥其作用及效果,促进工业化进程的稳定发展。
1现代机械制造工艺和精密加工技术相关概念
1.1现代机械制造工艺
现代机械制造工艺在实际运用的过程中,其能够有效发挥自身的优势,将信息技术及数字技术融入机械加工中,能够弥补传统机械加工精度的不足,从而能够有效发挥信息技术及数字技术的优势,其自动化程度相对较高,可以对机械工业的设计、检测以及维修等各项工作进行优化升级,解放了人们双手的同时,节约了人工成本,提高企业的整体经济效益,发挥重要的推进作用。再加上人们的环保意识正在不断提升,在制造过程中,对节能性及环保性提出了更高的要求,所以,通过各种现代机械制造工艺的运用可以朝这一方向发展,有效控制能源消耗,保障生态环境健康发展[1]。
1.2精密加工技术
精密加工技术作为一项高精度加工技术,其加工工艺是一种有代表性的现代机械制造工艺,在工业领域和高新科技领域得到广泛的应用。例如,在精密机床制造和航空航天零件制作等实际加工生产中,精密加工技术不仅能够发挥自身的优势,同时可以为各项研究设计工作提供更多有力的制造保障。在实际融入机械制造中时,由于人们对这些产品的性能要求正在不断提升,为了使精密加工技术更有效地运用,可以运用机械优化设计等相关技术,对零件做好全面的分析,在现有的基础上对各项参数进行优化,保障技术应用效果,减少影响因素。
2现代机械制造工艺和精密加工技术的关系
随着国民经济不断提高,人们的生活水平越来越高,对产品的要求也越来越高。过去,人们更加注重产品的实用性,现在既要求实用性也要求产品具备一定的设计感和美观性,这意味着传统的机械设计及制造工艺已经难以满足现代社会大众的需求,精密加工应运而生。从本质来说,精密加工属于机械制造的内容,是通过新的制造方式来辅助机械制造,并在原有机械制造工艺方面进行创新,两者具有密切联系。因此,研究精密加工技术能够促进机械制造工艺创新发展,才能在机械制造过程中应用精密加工技术改善机械制造工艺效果,促使制造出来的产品更加美观、细致、富有艺术感[2]。
3现代机械制造和精密加工的技术特点
3.1柔性化
如今的机械制造车间,基本是采用流水线、模块化的制造方式实行模具生产,因此,需要柔性化的输送制造模块协助其形成流水线。柔性化不仅体现在生产线中的制造模块,还需要根据生产需求细则,利用柔性化管理方法,减少产品错漏的频率。工厂都有统一标准的质量合格线,由于工人流动性较大,无法第一时间就生产出精密精准的产品,需要管理人员采用柔性化生产方法,严控质量关。此外,由于工业市场经济带来的诸多影响,产品的生产流程需要结合信息技术手段才能够提升管理效率,需要将柔性化特点与自动化控制系统相结合,改善材料与产品之间的映射能力。由于工厂内部基本具备模式识别设备,能够实现高精度细节识别,在设置柔性化生产工艺之后,仍然需要将产品类型、材料类型与加工工艺进行柔性化匹配,提高生产效率的同时,也能有效提升市场适应度。柔性化不仅体现在材料产品层面,还需要体现在生产工艺流程以及质量管理层面[3]。
3.2虚拟化
虚拟化是现代机械制造业和计算机技术行业紧密结合的重要标志之一。在产品生产之前,需要利用计算机模拟软件对生产参数进行调整,将自动化控制器械的灵敏度进行调整,在此过程中实现生产工艺的虚拟化校验。很多工厂配备了虚拟现实设备,通过软硬件资源的配合,模拟生产数据拟合的结果,通过数据分析结果做出相应决策。结合虚拟化软硬件资源,可以实现高效率工业生产,可以在计算机信息管理平台中模拟生产流程工艺的数据分析结果,辅助管理人员判断流程是否具有合理性和科学性。此外,虚拟化设计不仅需要工业生产过程的合理化和规范化进行辅助,还需要丰富的信息技术应用经验,优化工业产品的设计方案。机械制造和精密加工技术,离不开虚拟化平台的支持,也离不开信息技术手段的辅助[4]。
3.3系统性
现代化的机械制造和精密加工技术拥有其各自独立的一套完善系统,并且这两套系统紧密结合,相互交融、协同工作。所以拥有一套先进的现代机械制造工艺并且有与之配套的精密加工技术,就能大大提高机械生产效率,同时这两套相互独立的系统有组成一套完整的机械制造生产系统。现如今,机械制造业人员习惯运用老一套的勘测方法来设计计算,使得制造生产出来的产品相对落后。并且不擅长对机械产品进行准确的测量、成本控制以及预期性能的总结,导致产品不符合现代的技术要求。所以,只有充分利用现代科技手段提高机械制造工艺以及精密加工技术,才能突破我国在机械制造生产中的瓶颈。
2.3 全球性特点
除此之外,随着经济全球化趋势的不断发展,我国与国外之间的联系日益密切,国外先进技术与理念融入现代机械制造加工过程中,为现代机械制造工艺的产生及发展提供了极大的便利;同时,相关企业为了进一步提高生产水平与经济效益,管理人员需要积极转变自身的思想观念,加强对经济全球化的了解与重视,并加强国外先进技术的了解与应用,以此来对现代机械制造工艺与精密加工技术进行优化创新,提高其应用水平,同时促进我国工业行业整体的健康发展。
3.4关联性
关联性主要体现在机械制造产品和市场经济之间的内在联系上。在工业领域内,需要明确市场需求和产品生产之间的关系。如果在工程项目建设的任一环节上出现问题,会严重影响生产制造业和市场经济之间的关联性,进一步影响市场经济发展。工厂不仅承担着生产制造的职能,也需要根据需求设计内容,完成匹配度高的生产工艺流程分析,以此来实现经济和社会效益的双重提升。关联性是将顶层设计相关技术理论应用在工业机械生产制造行业的重要因素之一。
现代机械制造工业和精密加工技术之间存在内在关联性,需要相关工作人员严格把控产品质量关,按照市场经济的发展趋势迎合用户使用需求。精密加工技术在现代机械制造中的应用,绝大多数取决于操作工艺和管理手段的关联性[5]。
4现代机械制造工艺
4.1气体保护焊工艺
气体保护焊工艺是焊接作业过程中常见的机械制造工艺之一。有别于传统的电焊,气体保护焊(例如氩弧焊)工艺能够实现高精度、危险系数低的焊接作业过程。气体保护焊工艺能够在焊接过程中利用保护气体的隔绝作用,对金属融化位置与焊接操作进行精准对接。气体保护焊工艺,操作相对传统电焊简单,对人体的伤害有所降低,能够减少高温对人体的影响,减少人力施工成本。不论是对体积较小的电路板或者其他类型薄板进行焊接,气体保护焊工艺能够实现高精准度的焊接操作,同样对于厚板焊接操作,气体保护焊工艺可以实现融化速度快、提升焊接效率、减少焊渣等性能。
4.2虚拟制造技术
在机械工程领域内,不仅需要实现生产流水线的产品制作,还需要利用现代化设备进行设计与研发,直到产品流入市场,都需要虚拟制造技术的辅助。虚拟制造技术可以利用计算机硬件设备和软件资源,将需要完成的工程项目建设内容进行虚拟化计算,通过建立数据参数模型,完成生产过程的仿真流程。虚拟制造技术能够有效提升生产效率,还能够辅助进行设计与包装,减少原材料的浪费,有效避免质量漏洞。通过对机械产品的仿真与模拟,可以从工艺优化的角度完成系统性制造内容,可以及时发现产品可能存在的缺陷,提高生产效率[6]。
4.3电阻焊工艺
电阻焊工艺在机械制造过程中的应用较为广泛,能够有效提高生产效率。由于此工艺不会产生多余有害气体和过多的焊渣、噪声等污染源,有助于实现生态环保以及绿色生产过程。电阻焊需要将通电正负极的焊接物进行加热融化,结合金属部件,进行焊接操作过程。但是电阻焊工艺的操作难度较大,需要较高精准度和耐心,因此,对专业人员的技术水平和经验要求较高。电阻焊工艺的操作流程仍然需要进一步优化,改善其维修难度大、成本较高的缺陷。但是随着机械制造工业和精密加工技术的相关要求逐渐提高,电阻焊工艺仍然需要在合适的作业需求中进行应用,能够进一步提升环保生产能力。
4.4埋弧焊工艺
埋弧焊工艺主要分为半自动和全自动两种模式。全自动埋弧焊只需要焊接操作,用全自动设备输送电弧和焊丝,不需要额外的人工操作。半自动埋弧焊则需要人工手动送入焊丝,然后人工移动电弧,半自动埋弧焊工艺使用的人工劳动成本较高,因此,很多工厂不采用此种工艺形式。在焊接钢筋或者其他应力性较强的材料才会使用埋弧焊工艺,需要工业研究人员进一步完善此工艺形式,优化性能,提高此种技术的生产效率。
5精密加工技术应用
5.1精密切削
精密切削是实现高精准度机械制造工艺的关键内容之一。在实现精密切削之前,需要将待加工的零件进行准确定位,通过计算机软件或者数字编程设备进行参数统一标准设置,严格把控切削质量。为减少原材料的浪费,提高加工利用率,需要将流水线上的所有零部件进行统一质量管理。还需要将切削完成的元件进行抽样检查,通过虚拟现实设备检测半成品的质量合格率。相关工作人员需要将需求内容和生产过程精准对接,提高产品的生产质量和效率,为避免不合格产品数量的增加,需要定时调试切削系统以及软件编程系统。在工厂的生产流水线中,需要定期将作业设备进行降温处理,保障切削过程不被温度影响。此外,结合计算机数据处理软件,将精密切削过程进行数据参数化建模,模拟生产作业流程,避免在实际生产过程中出现较多失误[7]。
5.2模具制造
模具制造是机械制造与精密加工领域常见的生产形式之一。模具制造不仅可以应用在机械制造行业,还可以应用在电子通信行业、计算机硬件、嵌入式、自动化控制以及人工智能等多种行业领域。模具制造可以通过打磨、浇筑等技术手段实现产品加工,在选择合适的原材料之后,可以根据定制化需求设计内容,选择模具制造方式。计算机技术和机械精密加工制造相结合,能够提高制造工艺的精度,在建立相关数据参数模型之后,可以高效生产批量产品。但是模具制造过程需要建立相关技术管理系统,将毛坯的各项数据参数与模具参数之间的差距控制在一定范围内,以便于后续打磨和浇筑作业。此外,模具制造可以实现高效率批量生产,对于工业项目的定制化设计需求和高精度产品设计方案,利用计算机技术调整模具制造参数,能够有效提升生产效率。
5.3纳米技术
纳米技术是高分子化学原理、物理原理、计算机技术有机结合的机械制造精密加工技术类型。由于纳米技术成本较高,精度要求较高,因此,被广泛应用于军工、航空等相关产业的机械制造过程中。随着数字化机械制造工艺赫尔流程的逐渐优化与完善,纳米技术可以实现高标准、高质量、高精度的生产制造,如芯片电路板、激光核聚变反射镜等相关高精尖产品。纳米技术可以有效提升机械零部件的生产制造效率,还能够协助管理人员优化作业生产流程。此外,由于纳米技术的应用范围较为广泛,可以协助计算机技术和物理学原理的创新研究,将较为复杂的零部件批量生产,实现技术创新和产研融合的生产制造过程。因此,纳米技术可以推动工业产业的不断创新发展,也可以根据行业发展需求,推动产业经济结构的转型升级。
结束语
总之,现代机械制造工艺及精密加工技术作为机械制造领域重要组成部分,企业在发展过程中,要想提高自身综合实力,从而在市场竞争中取得自设的地位,则应该加强对技术应用与创新的认识,将精密技工技术贯穿各个环节,认识遵循时代发展的重要性,使得企业制造的水平不断提升,确保企业经济效益的同时,促进我国工业化水平的稳步提高。
参考文献
[1]刘莉莉.现代机械制造技术与加工工艺的应用探究[J].南方农机,2019,50(09):142.
[2]苗运歌.浅谈现代机械制造工艺及精密加工技术应用[J].现代制造技术与装备,2019(05):175-176.
[3]王俊卿.现代机械制造工艺及精密加工技术的应用分析[J].中小企业管理与科技(下旬刊),2019(03):189-190.
[4]周健勇.论现代机械制造工艺与精密加工技术[J].山东工业技术,2019(07):18.
[5]于文涛.现代机械制造工艺与精密加工技术探究[J].东西南北,2019(06):163.
[6]霍新亮.现代机械制造工艺与精密加工技术的分析[J].课程教育研究,2019(05):246.
[7]饶庆华.浅谈现代机械制造工艺及精密加工技术[J].四川水泥,2018(12):154.